In this work we find that not only the Heisenberg-like uncertainty productsand the R\'enyi-entropy-based uncertainty sum have the same first-order valuesfor all the quantum states of the $D$-dimensional hydrogenic andoscillator-like systems, respectively, in the pseudoclassical ($D \to \infty$)limit but a similar phenomenon also happens for both theFisher-information-based uncertainty product and the Shannon-entropy-baseduncertainty sum, as well as for the Cr\'amer-Rao and Fisher-Shannoncomplexities. Moreover, we show that the LMC (L\'opez-Ruiz-Mancini-Calvet) andLMC-R\'enyi complexity measures capture the hydrogenic-harmonic difference inthe high dimensional limit already at first order.
展开▼
机译:在这项工作中,我们发现不仅对于$ D $维的氢和类似振动子的系统的所有量子态,像Heisenberg一样的不确定性乘积和基于R \'enyi熵的不确定性总和分别具有相同的一阶值。 ,在伪经典($ D \ to \ infty $)极限中,但是基于Fisher信息的不确定性乘积和基于Shannon熵的不确定性总和以及Cr''amer-Rao和Fisher-Shannon复杂性。此外,我们表明,LMC(L'opez-Ruiz-Mancini-Calvet)和LMC-R'enyi复杂性量度已经在高维极限中捕获了一阶的氢谐波差异。
展开▼