首页> 外文OA文献 >Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems
【2h】

Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems

机译:复杂性度量与高维度的不确定关系   谐波和氢系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we find that not only the Heisenberg-like uncertainty productsand the R\'enyi-entropy-based uncertainty sum have the same first-order valuesfor all the quantum states of the $D$-dimensional hydrogenic andoscillator-like systems, respectively, in the pseudoclassical ($D \to \infty$)limit but a similar phenomenon also happens for both theFisher-information-based uncertainty product and the Shannon-entropy-baseduncertainty sum, as well as for the Cr\'amer-Rao and Fisher-Shannoncomplexities. Moreover, we show that the LMC (L\'opez-Ruiz-Mancini-Calvet) andLMC-R\'enyi complexity measures capture the hydrogenic-harmonic difference inthe high dimensional limit already at first order.
机译:在这项工作中,我们发现不仅对于$ D $维的氢和类似振动子的系统的所有量子态,像Heisenberg一样的不确定性乘积和基于R \'enyi熵的不确定性总和分别具有相同的一阶值。 ,在伪经典($ D \ to \ infty $)极限中,但是基于Fisher信息的不确定性乘积和基于Shannon熵的不确定性总和以及Cr''amer-Rao和Fisher-Shannon复杂性。此外,我们表明,LMC(L'opez-Ruiz-Mancini-Calvet)和LMC-R'enyi复杂性量度已经在高维极限中捕获了一阶的氢谐波差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号